A2PM
Release 1.2.0

Joao Vitorino

Jun 29, 2023

1 Adaptative Perturbation Pattern Method
1.1 HowTolnstall
1.2 HowToSetup
1.3 HowToUse
2 A2PMethod
3 Callbacks
3.1 BaseCallback
3.2 MetricCallback
33 TimeCallback.
4 Patterns
41 BasePattern.
4.2 CombinationPattern
43 IntervalPattern
5 Wrappers
5.1 BaseWrapper oo
5.2 KerasWrapper
5.3 SklearnWrapper
54 TorchWrapper
6 Index
Index

INTRODUCTION

(S)

2

13

....................... 13
....................... 14
....................... 14

15

....................... 15
....................... 17
....................... 19

23

....................... 23
....................... 23
....................... 24
....................... 24

25

27

A2PM, Release 1.2.0

Welcome to the official documentation of the Adaptative Perturbation Pattern Method.

A2PM is the outcome of R&D activities carried out at:

Research Group on Intelligent Engineering and Computing for Advanced Innovation
and Development (GECAD), School of Engineering, Polytechnic of Porto (ISEP/IPP),
4249-015 Porto, Portugal.

INTRODUCTION 1

A2PM, Release 1.2.0

2 INTRODUCTION

CHAPTER
ONE

ADAPTATIVE PERTURBATION PATTERN METHOD

A2PM is a gray-box method for the generation of realistic adversarial examples. It benefits from a modular architecture
to assign an independent sequence of adaptative perturbation patterns to each class, which analyze specific feature
subsets to create valid and coherent data perturbations.

This method was developed to address the diverse constraints of domains with tabular data, such as cybersecurity.
It can be advantageous for adversarial attacks against machine learning classifiers, as well as for adversarial training
strategies. This Python 3 implementation provides out-of-the-box compatibility with the Scikit-Learn library.

If you use A2PM, please cite the primary research article: https://doi.org/10.3390/1114040108
Check out the official documentation: https://a2pm.readthedocs.io/en/latest

Explore the public source code repository: https://github.com/vitorinojoao/a2pm

Data Adaptative Perturbation Patterns Realistic
Separation Adversarial
by Class Examples
Feature Class-specific

Analysis Perturbations

https://doi.org/10.3390/fi14040108
https://a2pm.readthedocs.io/en/latest/
https://github.com/vitorinojoao/a2pm

A2PM, Release 1.2.0

1.1 How To Install

The package and its dependencies can be installed using the pip package manager:

pip install a2pm

Alternatively, the repository can be downloaded and the package installed from the local directory:

pip install .

1.2 How To Setup

The package can be accessed through the following imports:

from a2pm import A2PMethod

from a2pm.callbacks import BaseCallback, MetricCallback, TimeCallback

from a2pm.patterns import BasePattern, CombinationPattern, IntervalPattern

from a2pm.wrappers import BaseWrapper, KerasWrapper, SklearnWrapper, TorchWrapper

A2PM can be created with a simple base configuration of Interval and/or Combination pattern sequences, which have
several possible parameters:

pattern = (

First pattern to be applied: Interval

{
"type": "interval",
"features": list(range(0, 20)),
"integer_features": list(range(10, 20)),
"ratio": 0.1,
"max_ratio": 0.3,
"missing_value": 0.0,
"probability": 0.6,

}1

Second pattern to be applied: Combination

{
"type": "combination",
"features": list(range(20, 40)),
"locked_features": list(range(30, 40)),
"probability": 0.4,

3

)

method = A2PMethod(pattern)

To support domains with complex constraints, the method is highly configurable:

General pattern sequence that will be applied to new data classes
pattern = (

(continues on next page)

4 Chapter 1. Adaptative Perturbation Pattern Method

A2PM, Release 1.2.0

(continued from previous page)

An instantiated pattern
MyCustomPattern(l, 2),

A pattern configuration

{
"type": MyCustomPattern,
"param_name_1": 3,
"param_name_2": 4,

3

)

Pre-assigned mapping of data classes to pattern sequences
preassigned_patterns = {

None to disable the perturbation of this class
"class_label_1": None,

Specific pattern sequence that will be applied to this class
"class_label_2": (
MyCustomPattern(5, 6),

{
"type": MyCustomPattern,
"param_name_1": 7,
"param_name_2": 8,

1,

),
}

method = A2PMethod(pattern, preassigned_patterns)

1.3 How To Use

A2PM can be utilized through the ‘fit’, ‘partial_fit’, ‘transform’ and ‘generate’ methods, as well as their respective
shortcuts:

Adapts to new data, and then creates adversarial examples
X_adversarial = method.fit_transform(X, y)

Encapsulates a Tensorflow/Keras classification model
classifier = KerasWrapper(my_model, my_custom_class_labels)

Adapts to new data, and then performs an untargeted attack against a classifier
X_adversarial = method.fit_generate(classifier, X, y)

Adapts to new data, and then performs a targeted attack against a classifier
X_adversarial = method.fit_generate(classifier, X, y, y_target)

To analyze specific aspects of the method, callback functions can be called before the attack starts (iteration 0) and after
each attack iteration (iteration 1, 2, ...):

1.3. How To Use 5

A2PM, Release 1.2.0

X_adversarial = method.fit_generate(
classifier,
X,
Yy,
y_target,

Additional configuration
iterations=10,
patience=2,

callback=[

Time consumption
TimeCallback(verbose=2),

Evaluation metrics
MetricCallback(classifier, vy,

An instantiated callback
MyCustomCallback(),

A simple callback function
MyCustomFunction,

my_custom_scorers, verbose=2),

Chapter 1. Adaptative Perturbation Pattern Method

CHAPTER
TWO

A2PMETHOD

class a2pm.A2PMethod (pattern, preassigned_patterns=None, class_discriminator=<function
A2PMethod.<lambda>=>, seed=None)

Bases: sklearn.base.BaseEstimator
Adaptative Perturbation Pattern Method.

A2PM generates realistic adversarial examples by assigning an independent sequence of adaptative patterns to
each class, which analyze specific feature subsets to create valid and coherent data perturbations.

Note: Class-specific data perturbations can only be created if the class of each sample is identified, either as a
label or a numeric representation. To obtain external Class IDs for internal use by this method, there are two
alternatives:

* Specify a class_discriminator function;

* Provide the y parameter to the fit, partial_fit, transform and generate methods.

Parameters

* pattern (pattern, config or tuple of patterns/configs) — Default pattern (or pattern tuple) to
be adapted for each new found class. Supports configurations to create patterns, as well as
pre-fitted pattern instances.

* preassigned_patterns (dict of ‘Class ID - pattern’ pairs (default None)) — Pre-assigned map-
ping of specific classes to their specific patterns (or pattern tuples). Also supports configu-
rations to create patterns, as well as pre-fitted pattern instances.

{ Class ID : pattern, Class ID : (pattern, pattern), Class ID : None }
Preassign None to a Class ID to disable perturbations of that class.
Set to None to disable pre-assignments, treating all classes as new.

¢ class_discriminator (callable or None (default lambda)) — Function to be used to identify
the Class ID of each sample of input data X, in order to use class-specific patterns.

class_discriminator(X) -> y

If no discriminator is specified and the y parameter is not provided to a method, all samples
will be assigned to the same general class. To prevent overlapping with regular Class IDs,
that class has the -2 ID. Therefore, the default function is:

lambda X: numpy.full(X.shape[0], -2)

Set to None to disable the default function, imposing the use of the y parameter for all meth-
ods.

* seed (int, None or a generator (default None)) — Seed for reproducible random number gen-
eration. If provided:

A2PM, Release 1.2.0

— For pattern configurations, it will override any configured seed;
— For already created patterns, it will not have any effect.
Variables

* classes (1ist of Class IDs)-The currently known classes. Only available after a call
to fit or partial_fit.

* class_mapping (dict of 'Class ID - pattern' pairs) — The current mapping of

known classes to their respective pattern tuples. Only available after a call to fit or partial_fit.

fit (X, y=None)
Fully adapts the method to new data.

First, the method is reset to the preassigned_patterns, be it configurations or pre-fitted pattern instances.
Then, for new found classes, the default pattern will be assigned and updated. For classes with pre-assigned
patterns, these will be updated.

Parameters
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.
Returns This A2PMethod instance.
Return type self

partial_fit (X, y=None)
Partially adapts the method to new data.

For new found classes, the default pattern will be assigned and updated. For known classes, either pre-
assigned or previously found, their patterns will be updated.

Parameters
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.
Returns This A2PMethod instance.
Return type self

transform(X, y=None, quantity=1, keep_original=False) — numpy.ndarray

Applies the method to create adversarial examples.
Parameters
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.

* quantity (int, > O (default 1)) — Number of examples to create for each sample.

8 Chapter 2. A2PMethod

A2PM, Release 1.2.0

* keep_original (bool (default False)) — Signal to keep the original input data in the returned
array, in addition to the created examples.

Returns

X_adversarial — Adversarial data, in the same order as input data.
If quantity > 1, the resulting array will be tiled:
examplel_of_samplel

examplel_of_sample2

examplel_of_sample3

example2_of_samplel

example2_of_sample2

example2_of_sample3

If keep_original is signalled, the resulting array will contain the original input data and also
be tiled:

samplel
sample2
sample3
examplel_of_samplel
examplel_of_sample2

examplel_of_sample3

Return type numpy array of shape (n_samples * quantity, n_features)

fit_transform(X, y=None, quantity=1, keep_original=False) — numpy.ndarray

Fully adapts the method to new data, and then applies it to create adversarial examples.

First, the method is reset to the preassigned_patterns, be it configurations or pre-fitted pattern instances.
Then, for new found classes, the default pattern will be assigned and updated. For classes with pre-assigned
patterns, these will be updated.

Parameters
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.
* quantity (int, > O (default 1)) — Number of examples to create for each sample.

* keep_original (bool (default False)) — Signal to keep the original input data in the returned
array, in addition to the created examples.

Returns
X_adversarial — Adversarial data, in the same order as input data.

If quantity > 1, the resulting array will be tiled.

A2PM, Release 1.2.0

If keep_original is signalled, the resulting array will contain the original input data and also
be tiled.

Return type numpy array of shape (n_samples * quantity, n_features)

partial_fit_transform(X, y=None, quantity=1, keep_original=False) — numpy.ndarray

Partially adapts the method to new data, and then applies it to create adversarial examples.

For new found classes, the default pattern will be assigned and updated. For known classes, either pre-
assigned or previously found, their patterns will be updated.

Parameters
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.
e quantity (int, > 0 (default 1)) — Number of examples to create for each sample.

* keep_original (bool (default False)) — Signal to keep the original input data in the returned
array, in addition to the created examples.

Returns
X_adversarial — Adversarial data, in the same order as input data.
If quantity > 1, the resulting array will be tiled.

If keep_original is signalled, the resulting array will contain the original input data and also
be tiled.

Return type numpy array of shape (n_samples * quantity, n_features)

generate (classifier, X, y=None, y_target=None, iterations=10, patience=2, callback=None) —
numpy.ndarray

Applies the method to perform adversarial attacks against a classifier.

An attack can be untargeted, causing any misclassification, or targeted, seeking to reach a specific class. To
perform a targeted attack, the class that should be reached for each sample must be provided in the y_target
parameter.

Note: The misclassifications are caused on the class predictions of the classifier. These predictions are
independent from the Class IDs provided in y or by the class_discriminator function, which remain for
internal use only.

Parameters
* classifier (object with a predict method) — Fitted classifier to be attacked.
* X (array-like in the (n_samples, n_features) shape) — Input data.

* y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.

* y_target (array-like in the (n_samples,) shape or None (default None)) — Class predictions
that should be reached in a targeted attack.

Set to None to perform an untargeted attack.

* iterations (int, > 0 (default 10)) — Maximum number of iterations that can be performed
before ending the attack.

10 Chapter 2. A2PMethod

A2PM, Release 1.2.0

patience (int, >= 0 (default 2)) — Patience for early stopping. Corresponds to the number of
iterations without further misclassifications that can be performed before ending the attack.

Set to O to disable early stopping.

callback (callable or list of callables) — List of functions to be called before the attack
starts (iteration 0), and after each attack iteration (iteration 1, 2, ...).

callback(**kwargs)
callback(X, iteration, samples_left, samples_misclassified, nanoseconds)

It can receive five parameters:

the current data (input data at iteration 0, and then adversarial data);

the current attack iteration;

the number of samples left to be misclassified;

the number of samples misclassified in the current iteration;

the number of nanoseconds consumed in the current iteration.
For example, a simple function to print each iteration can be:

def callback(**kwargs): print(kwargs[“iteration”])

Returns X_adversarial — Adversarial data, in the same order as input data.

Return type numpy array of shape (n_samples, n_features)

fit_generate(classifier, X, y=None, y_target=None, iterations=10, patience=2, callback=None) —

numpy.ndarray

Fully adapts the method to new data, and then applies it to perform adversarial attacks against a classifier.

First, the method is reset to the preassigned_patterns, be it configurations or pre-fitted pattern instances.
Then, for new found classes, the default pattern will be assigned and updated. For classes with pre-assigned
patterns, these will be updated.

An attack can be untargeted, causing any misclassification, or targeted, seeking to reach a specific class. To
perform a targeted attack, the class that should be reached for each sample must be provided in the y_target

parameter.

Note: The misclassifications are caused on the class predictions of the classifier. These predictions are
independent from the Class IDs provided in y or by the class_discriminator function, which remain for
internal use only.

Parameters

classifier (object with a predict method) — Fitted classifier to be attacked.
X (array-like in the (n_samples, n_features) shape) — Input data.

y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.

y_target (array-like in the (n_samples,) shape or None (default None)) — Class predictions
that should be reached in a targeted attack.

Set to None to perform an untargeted attack.

iterations (int, > 0 (default 10)) — Maximum number of iterations that can be performed
before ending the attack.

11

A2PM, Release 1.2.0

* patience (int, >= 0 (default 2)) — Patience for early stopping. Corresponds to the number of

iterations without further misclassifications that can be performed before ending the attack.
Set to O to disable early stopping.

callback (callable or list of callables) — List of functions to be called before the attack
starts (iteration 0), and after each attack iteration (iteration 1, 2, ...).

callback(**kwargs)

callback(X, iteration, samples_left, samples_misclassified, nanoseconds)

Returns X_adversarial — Adversarial data, in the same order as input data.

Return type numpy array of shape (n_samples, n_features)

partial_fit_generate(classifier, X, y=None, y_target=None, iterations=10, patience=2, callback=None)

— numpy.ndarray

Partially adapts the method to new data, and then applies it to perform adversarial attacks against a classifier.

For new found classes, the default pattern will be assigned and updated. For known classes, either pre-
assigned or previously found, their patterns will be updated.

An attack can be untargeted, causing any misclassification, or targeted, seeking to reach a specific class. To
perform a targeted attack, the class that should be reached for each sample must be provided in the y_target

parameter.

Note: The misclassifications are caused on the class predictions of the classifier. These predictions are
independent from the Class IDs provided in y or by the class_discriminator function, which remain for
internal use only.

Parameters

classifier (object with a predict method) — Fitted classifier to be attacked.
X (array-like in the (n_samples, n_features) shape) — Input data.

y (array-like in the (n_samples,) shape or None (default None)) — Class IDs of input data,
to use class-specific patterns.

Set to None to use the class_discriminator function.

y_target (array-like in the (n_samples,) shape or None (default None)) — Class predictions
that should be reached in a targeted attack.

Set to None to perform an untargeted attack.

iterations (int, > 0 (default 10)) — Maximum number of iterations that can be performed
before ending the attack.

patience (int, >= 0 (default 2)) — Patience for early stopping. Corresponds to the number of
iterations without further misclassifications that can be performed before ending the attack.

Set to 0 to disable early stopping.

callback (callable or list of callables) — List of functions to be called before the attack
starts (iteration 0), and after each attack iteration (iteration 1, 2, ...).

callback(**kwargs)

callback(X, iteration, samples_left, samples_misclassified, nanoseconds)

Returns X_adversarial — Adversarial data, in the same order as input data.

Return type numpy array of shape (n_samples, n_features)

12

Chapter 2. A2PMethod

CHAPTER
THREE

CALLBACKS

3.1 BaseCallback

class a2pm.callbacks.BaseCallback (verbose=0)

Bases: object
Base Attack Callback.

A callback records and/or prints specific values of each attack iteration of the generate method. This base class
cannot be directly utilized.

It must be either a function or a class implementing the __call__ method, according to one of the following
signatures:

__call__(self, **kwargs)
__call__(self, X, iteration, samples_left, samples_misclassified, nanoseconds)
It can receive five parameters:

* the current data (input data at iteration 0, and then adversarial data);

¢ the current attack iteration;

* the number of samples left to be misclassified;

* the number of samples misclassified in the current iteration;

¢ the number of nanoseconds consumed in the current iteration.
For example, a simple function to print each iteration can be:
def callback(**kwargs): print(kwargs[“iteration”])

Parameters verbose (int, in {0, 1, 2} (default 0)) — Verbosity level of the callback.

Set to 2 to enable a complete printing of the values and their descriptions, to 1 to enable a simple
printing of the values, or to 0 to disable verbosity.

Variables values (1ist of values)- The values recorded at each iteration by an inheriting class.
Empty list before that class is called.

13

A2PM, Release 1.2.0

3.2 MetricCallback

class a2pm.callbacks.MetricCallback(classifier, y, scorers=[('Macro-averaged F1-Score', 'fl_macro')],
verbose=0)

Bases: a2pm.callbacks.base_callback.BaseCallback

Metric Attack Callback.

Records the score of one or more metrics at each iteration.

The metrics are measured according to their respective scorer functions.
Parameters

* classifier (object with a predict method) — Fitted classifier to be evaluated, which should be
the same classifier being attacked.

* y (array-like in the (n_samples,) shape or None (default None)) — Ground truth classes that
the classifier should predict.

* scorers (list of tuples of ‘description, scorer’) — Tuples of custom metric descriptions and
respective scorer functions.

Besides an actual scorer function, a Scikit-learn compatible description is also supported.
The default scorer is the following:
(“Macro-averaged F1-Score”, “fl_macro”)

* verbose (int, in {0, 1, 2} (default 0)) — Verbosity level of the callback.

Set to 2 to enable a complete printing of the values and their descriptions, to 1 to enable a
simple printing of the values, or to 0 to disable verbosity.

Variables values (1ist of tuples of values) - The tuples of evaluation scores, one per met-
ric, of each iteration. Empty list before this callback is called.

3.3 TimeCallback

class a2pm.callbacks.TimeCallback (verbose=0)
Bases: a2pm.callbacks.base_callback.BaseCallback

Time Attack Callback.
Records the time consumption of each iteration.

It is measured as nanoseconds per created example, according to the total samples that could be misclassified at
each iteration.

Parameters verbose (int, in {0, 1, 2} (default 0)) — Verbosity level of the callback.

Set to 2 to enable a complete printing of the values and their descriptions, to 1 to enable a simple
printing of the values, or to 0 to disable verbosity.

Variables values (1ist of values)— The time consumption of each iteration. Empty list before
this callback is called.

14 Chapter 3. Callbacks

CHAPTER
FOUR

PATTERNS

4.1 BasePattern

class a2pm.patterns.BasePattern(features=None, probability=0.5, momentum=0.99, seed=None)
Bases: sklearn.base.BaseEstimator

Base Perturbation Pattern.

A pattern analyzes specific feature subsets to fully or partially adapt itself, and then create valid and coherent
perturbations in new data. This base class cannot be directly utilized.

It must be a class implementing the fit, partial_fit and transform methods, according to the following signatures:
fit(self, X, y=None) -> self
partial_fit(self, X, y=None) -> self
transform(self, X) -> numpy array
Parameters

» features (int, array-like or None) — Index or array-like of indices of features whose values
are to be analyzed and perturbed.

Set to None to use all features.

 probability (float, in the (0.0, 1.0] interval) — Probability of applying the pattern in trans-
form.

Set to 1 to always apply the pattern.

* momentum (float, in the [0.0, 1.0] interval) — Momentum of the partial_fit updates.
Set to 1 to remain fully adapted to the initial data, without updates.
Set to 0 to always fully adapt to new data, as in fir.

* seed (int, None or a generator) — Seed for reproducible random number generation.
Set to None to disable reproducibility, or to a generator to use it unaltered.

Variables generator (numpy generator object)— The random number generator to be used by
an inheriting class.

to_apply () — bool
Checks if the pattern is to be applied, according to the probability.

Returns True if the pattern is to be applied; False otherwise.

Return type bool

15

A2PM, Release 1.2.0

fit_transform(X, y=None) — numpy.ndarray

Fully adapts the pattern to new data, and then applies it to create data perturbations.
Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.
Returns X_perturbed — Perturbed data.
Return type numpy array of shape (n_samples, n_features)

partial_fit_transform(X, y=None) — numpy.ndarray

Partially adapts the pattern to new data, according to the momentum, and then applies it to create data
perturbations.

Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.

Returns X_perturbed — Perturbed data.

Return type numpy array of shape (n_samples, n_features)

set_params (**params)
Sets the parameters.

Parameters **params (dict of ‘parameter name - value’ pairs) — New valid parameters for this
pattern.

Returns This pattern instance.
Return type self

set_momentum (momentum) — None

Sets the momentum.
Parameters momentum (float, in the [0.0, 1.0] interval) — Momentum of the partial_fit updates.
Set to 1 to remain fully adapted to the initial data, without updates.
Set to 0 to always fully adapt to new data, as in fit.
Raises ValueError — If the parameters do not fulfill the constraints.

set_probability (probability) — None
Sets the probability.

Parameters probability (float, in the (0.0, 1.0] interval) — Probability of applying the pattern in
transform.

Set to 1 to always apply the pattern.
Raises ValueError — If the parameters do not fulfill the constraints.

set_features (features) — None

Sets the features.

Parameters features (int, array-like or None) — Index or array-like of indices of features whose
values are to be perturbed.

Set to None to use all features.

Raises ValueError — If the parameters do not fulfill the constraints.

16 Chapter 4. Patterns

A2PM, Release 1.2.0

set_seed(seed) — None

Sets the seed for random number generation.
Parameters seed (int, None or a generator) — Seed for reproducible random number generation.
Set to None to disable reproducibility, or set to a generator to use it unaltered.

Raises ValueError — If the parameters do not fulfill the constraints.

4.2 CombinationPattern

class a2pm.patterns.CombinationPattern(features=None, locked_features=None, probability=0.5,
momentum=0.99, seed=None)

Bases: aZ2pm.patterns.base_pattern.BasePattern
Combination Perturbation Pattern.

Perturbs features by replacing their values with other valid combinations. Intended use: categorical features
(nominal and ordinal).

The valid combinations start being partially updated when the partial_fit or partial_fit_transform methods are
called.

Parameters

» features (int, array-like or None) — Index or array-like of indices of features whose values
are to be used in valid combinations.

Set to None to use all features.

* locked_features (int, array-like or None) — Index or array-like of indices of features whose
values are to be used in valid combinations, without being modified.

These locked feature indices must also be present in the general features parameter.
Set to None to not lock any feature.

 probability (float, in the (0.0, 1.0] interval) — Probability of applying the pattern in trans-
Sform.

Set to 1 to always apply the pattern.
* momentum (float, in the [0.0, 1.0] interval) — Momentum of the partial_fit updates.
Set to 1 to remain fully adapted to the initial data, without updates.
Set to O to always fully adapt to new data, as in fit.
* seed (int, None or a generator) — Seed for reproducible random number generation.
Set to None to disable reproducibility, or to a generator to use it unaltered.
Variables

* valid_cmbs (numpy array of combinations) — The valid combinations recorded by
the feature analysis of this pattern. Only available after a call to fit or partial_fit.

* generator (numpy generator object) — The random number generator used by this
pattern.

4.2. CombinationPattern 17

A2PM, Release 1.2.0

fit (X, y=None)
Fully adapts the pattern to new data.

Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.

Returns This pattern instance.

Return type self

partial_fit (X, y=None)
Partially adapts the pattern to new data.

Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.

Returns This pattern instance.

Return type self

transform(X) — numpy.ndarray

Applies the pattern to create data perturbations.
Parameters X (array-like of shape (n_samples, n_features)) — Input data.
Returns X_perturbed — Perturbed data.
Return type numpy array of shape (n_samples, n_features)

set_params (**params)
Sets the parameters.

Parameters **params (dict of ‘parameter name - value’ pairs) — Valid parameters for this pat-
tern.

Returns This pattern instance.
Return type self

set_locked_features (locked_features) — None
Sets the locked features.

Parameters locked_features (int, array-like or None) — Index or array-like of indices of features
whose values are to be used in valid combinations, without being modified.

These locked feature indices must also be present in the general features parameter.
Set to None to not lock any feature.

Raises ValueError — If the parameters do not fulfill the constraints.

18 Chapter 4. Patterns

A2PM, Release 1.2.0

4.3 IntervalPattern

class a2pm.patterns.IntervalPattern(features=None, integer_features=None, ratio=0.1, max_ratio=None,
missing_value=None, probability=0.5, momentum=0.99,
seed=None)

Bases: aZ2pm.patterns.base_pattern.BasePattern
Interval Perturbation Pattern.

Perturbs features by increasing or decreasing their values, according to a ratio of the valid interval of minimum
and maximum values. Intended use: numerical features (continuous and discrete).

The valid interval starts being partially updated when the partial_fit or partial_fit_transform methods are called.
Parameters

» features (int, array-like or None) — Index or array-like of indices of features whose values
are to be increased or decreased.

Set to None to use all features.

* integer_features (int, array-like or None) — Index or array-like of indices of features whose
values are to be increased or decreased, without a fractional part.

These integer feature indices must also be present in the general features parameter.
Set to None to not impose integer values on any feature.

* ratio (float, > 0.0) — Ratio of increase/decrease of the value of a feature, relative to its min-
imum and maximum values.

* max_ratio (float or None, >= min_ratio) — Maximum ratio. If provided, a random value in
the [ratio, max_ratio) interval will be used.

Set to None to always use the exact value of ratio.

* missing_value (float or None) — Value to be considered as missing when found in a feature,
preventing its perturbation.

Set to None to perturb all found values.

* probability (float, in the (0.0, 1.0] interval) — Probability of applying the pattern in trans-
form.

Set to 1 to always apply the pattern.
* momentum (float, in the [0.0, 1.0] interval) — Momentum of the partial_fit updates.
Set to 1 to remain fully adapted to the initial data, without updates.
Set to 0 to always fully adapt to new data, as in fir.
* seed (int, None or a generator) — Seed for reproducible random number generation.
Set to None to disable reproducibility, or to a generator to use it unaltered.
Variables

e moving_mins (numpy array of numbers)-—The minimum values recorded by the feature
analysis of this pattern. Only available after a call to fit or partial_fit.

» moving_maxs (numpy array of numbers)— The maximum values recorded by the fea-
ture analysis of this pattern. Only available after a call to fit or partial_fit.

4.3. IntervalPattern 19

A2PM, Release 1.2.0

* generator (numpy generator object) — The random number generator used by this
pattern.

fit (X, y=None)
Fully adapts the pattern to new data.

Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.

Returns This pattern instance.

Return type self

partial_fit (X, y=None)
Partially adapts the pattern to new data.

Parameters
* X (array-like of shape (n_samples, n_features)) — Input data.
* y (ignored) — Parameter compatibility.

Returns This pattern instance.

Return type self

transform(X) — numpy.ndarray

Applies the pattern to create data perturbations.
Parameters X (array-like of shape (n_samples, n_features)) — Input data.
Returns X_perturbed — Perturbed data.
Return type numpy array of shape (n_samples, n_features)

set_params (**params)

Sets the parameters.

Parameters **params (dict of ‘parameter name - value’ pairs) — Valid parameters for this pat-
tern.

Returns This pattern instance.
Return type self

set_missing_value(missing_value) — None
Sets the missing value.

Parameters missing_value (float or None) — Value to be considered as missing when found in a
feature, preventing its perturbation.

Set to None to perturb all found values.
Raises ValueError — If the parameters do not fulfill the constraints.

set_ratio(ratio, max_ratio) — None
Sets the ratio.

Parameters

e ratio (float, > 0.0) — Ratio of increase/decrease of the value of a feature, relative to its
minimum and maximum values.

20 Chapter 4. Patterns

A2PM, Release 1.2.0

* max_ratio (float or None, >= min_ratio) — Maximum ratio. If provided, a random value
in the [ratio, max_ratio) interval will be used.

Set to None to always use the exact value of ratio.
Raises ValueError — If the parameters do not fulfill the constraints.

set_integer_features (integer_features) — None

Sets the integer features.

Parameters integer_features (int, array-like or None) —Index or array-like of indices of features
whose values are to be increased or decreased, without a fractional part.

These integer feature indices must also be present in the general features parameter.
Set to None to not impose integer values on any feature.

Raises ValueError - If the parameters do not fulfill the constraints.

4.3. IntervalPattern 21

A2PM, Release 1.2.0

22 Chapter 4. Patterns

CHAPTER
FIVE

WRAPPERS

5.1 BaseWrapper

class a2pm.wrappers.BaseWrapper (**params)
Bases: object

Base Classifier Wrapper.

A wrapper encapsulates a classifier that is ready to provide class predictions (is already fitted) for the generate
method. This base class cannot be directly utilized.

Additionally, a wrapped classifier can also be used as a class_discriminator function, to be called to identify the
Class ID of each sample.

It must be a class implementing the predict method, according to the following signature:
predict(self, X) -> y

Parameters **params (dict of ‘parameter name - value’ pairs) — Optional parameters to provide to
the classifier during the class prediction process.

5.2 KerasWrapper

class a2pm.wrappers.KerasWrapper (classifier, classes=None, **params)

Bases: aZ2pm.wrappers.base_wrapper.Baselirapper
Keras Classifier Wrapper.
Encapsulates a Tensorflow/Keras classification model.
Parameters
* classifier (object with a predict method) — Fitted classifier to be wrapped.

* classes (list of Class IDs or None (default None)) — Classes to convert predictions to, using
the indices provided by the prediction process.

Set to None to use the default class indices.

» *¥params (dict of ‘parameter name - value’ pairs) — Optional parameters to provide to the
classifier during the prediction process.

predict(X)

Applies the wrapped classifier and converts its class probability predictions.

Parameters X (array-like in the (n_samples, n_features) shape) — Input data.

23

A2PM, Release 1.2.0

Returns y — The class predictions.

Return type numpy array of shape (n_samples,)

5.3 SklearnWrapper

class a2pm.wrappers.SklearnWrapper (classifier, **params)

Bases: a2pm.wrappers.base_wrapper.Basellrapper
Sklearn Classifier Wrapper.
Encapsulates a Scikit-Learn classification model.
Parameters
* classifier (object with a predict method) — Fitted classifier to be wrapped.

 **params (dict of ‘parameter name - value’ pairs) — Optional parameters to provide to the
classifier during the prediction process.

predict(X)
Applies the wrapped classifier directly, without needing to convert its class predictions.
Parameters X (array-like in the (n_samples, n_features) shape) — Input data.

Returns y — The class predictions.

Return type numpy array of shape (n_samples,)

5.4 TorchWrapper

class a2pm.wrappers.TorchWrapper (classifier, classes=None, **params)
Bases: a2pm.wrappers.base_wrapper.Baselirapper

Torch Classifier Wrapper.
Encapsulates a PyTorch classification model.
Parameters
* classifier (object with a __call__ method) — Fitted classifier to be wrapped.

* classes (list of Class IDs or None (default None)) — Classes to convert predictions to, using
the indices provided by the prediction process.

Set to None to use the default class indices.

» **params (dict of ‘parameter name - value’ pairs) — Optional parameters to provide to the
classifier during the prediction process.

predict(X)
Applies the wrapped classifier and converts its class probability predictions.
Parameters X (array-like in the (n_samples, n_features) shape) — Input data.

Returns y — The class predictions.

Return type numpy array of shape (n_samples,)

24 Chapter 5. Wrappers

CHAPTER
SIX

INDEX

25

A2PM, Release 1.2.0

26 Chapter 6. Index

A

A2PMethod (class in a2pm), 7

B

BaseCallback (class in a2pm.callbacks), 13
BasePattern (class in a2pm.patterns), 15
Baselirapper (class in a2pm.wrappers), 23

C

CombinationPattern (class in a2pm.patterns), 17

F

fitQ (a2pm.A2PMethod method), 8

fit Q) (a2pm.patterns. CombinationPattern method), 17

fit Q (a2pm.patterns.IntervalPattern method), 20

fit_generate() (a2pm.A2PMethod method), 11

fit_transform() (a2pm.A2PMethod method), 9

fit_transform() (a2pm.patterns.BasePattern method),
15

G

generate() (a2pm.A2PMethod method), 10

IntervalPattern (class in a2pm.patterns), 19

K

KerasWrapper (class in a2pm.wrappers), 23

M

MetricCallback (class in a2pm.callbacks), 14

P

partial_fit(Q) (a2pm.A2PMethod method), 8
partial_fit(Q (a2pm.patterns. CombinationPattern

method), 18

partial_fit(Q) (a2pm.patterns.Interval Pattern
method), 20

partial_fit_generate() (a2pm.A2PMethod
method), 12

INDEX

partial_fit_transform()
method), 10

partial_fit_transform()
(a2pm.patterns.BasePattern method), 16

predict() (a2pm.wrappers.KerasWrapper method), 23

predict() (a2pm.wrappers.SklearnWrapper method),
24

predict () (a2pm.wrappers.TorchWrapper method), 24

S

set_features() (a2pm.patterns.BasePattern method),
16

set_integer_features()
(a2pm.patterns.Interval Pattern
21

set_locked_features()
(a2pm.patterns. CombinationPattern method),
18

set_missing_value() (a2pm.patterns.IntervalPattern
method), 20

set_momentum() (aZ2pm.patterns.BasePattern method),
16

set_params () (a2pm.patterns.BasePattern method), 16

set_params () (a2pm.patterns. CombinationPattern
method), 18

set_params () (a2pm.patterns.IntervalPattern method),
20

set_probability()
method), 16

set_ratio() (a2pm.patterns.IntervalPattern method),
20

set_seed() (a2pm.patterns.BasePattern method), 17

SklearnWrapper (class in a2pm.wrappers), 24

T

TimeCallback (class in a2pm.callbacks), 14

to_apply Q) (a2pm.patterns.BasePattern method), 15

TorchWrapper (class in a2pm.wrappers), 24

transform() (a2pm.A2PMethod method), 8

transform() (a2pm.patterns. CombinationPattern
method), 18

(a2pm.A2PMethod

method),

(a2pm.patterns.BasePattern

27

A2PM, Release 1.2.0

transform() (a2pm.patterns.IntervalPattern method),
20

28 Index

	Adaptative Perturbation Pattern Method
	How To Install
	How To Setup
	How To Use

	A2PMethod
	Callbacks
	BaseCallback
	MetricCallback
	TimeCallback

	Patterns
	BasePattern
	CombinationPattern
	IntervalPattern

	Wrappers
	BaseWrapper
	KerasWrapper
	SklearnWrapper
	TorchWrapper

	Index
	Index

